Fleischkonsum in Deutschland…

Deutsche schlachten pro Jahr 750 Millionen Tiere

 

http://shortlinks.de/738n

| Lesedauer: 4 Minuten
Claudia Ehrenstein

Politikredakteurin
Pro Jahr werden in Deutschland rund 750 Millionen Tiere geschlachtet – die Mehrheit davon Hühner Pro Jahr werden in Deutschland rund 750 Millionen Tiere geschlachtet – die Mehrheit davon Hühner
Pro Jahr werden in Deutschland rund 750 Millionen Tiere geschlachtet – die Mehrheit davon Hühner

Quelle: Infografik Die Welt

Der Fleischhunger der Deutschen ist groß: Jedes Jahr verzehren sie pro Kopf 60 Kilogramm, besagt der Fleischatlas. Zugleich wächst der Bedarf an Schlachtplätzen auf immer „absurdere Kapazitäten“.

Die Scheibe Schinken auf dem Brot, das kleine Schnitzel zum Mittag und zwischendurch schnell noch eine Currywurst an der Imbissbude: Für sich genommen sind das jeweils nur wenige Gramm. Im Laufe der Tage und Monate aber können sie sich zu gewaltigen Mengen summieren.

Jeder Deutsche verzehrt im Jahr durchschnittlich 60 Kilogramm Fleisch, in den USA liegt der Pro-Kopf-Verbrauch sogar schon bei mehr als 75 Kilogramm. In keinem anderen Land der Welt wird so viel Fleisch produziert und gegessen wie in China. Und der Hunger auf Fleisch ist längst noch nicht gestillt.

Fleisch ist weltweit ein „big business“ mit enormen Wachstumraten, heißt es im „Fleischatlas 2014“, den die Grünen-nahe Heinrich-Böll-Stiftung und der Bund für Umwelt und Naturschutz (Bund) am Donnerstag in Berlin vorgestellt haben. Derzeit werden weltweit rund 320 Millionen Tonnen Fleisch pro Jahr produziert. Mitte des Jahrhundert werden es mindestens 470 Millionen Tonnen sein. Der Fleischatlas zeigt, welche dramatischen Folgen der Fleischhunger weltweit haben wird.

Zwang zu Billigfleisch nimmt zu

Allein um das Futter für die wachsende Zahl von Tieren zu produzieren, werden immer größere Flächen benötigt. Schon heute werden 70 Prozent der Agrarflächen beansprucht, um Tiere zu füttern. Das betrifft sowohl Weiden als auch Ackerflächen.

Umgerechnet 16 Millionen Hektar Land werden allein benötigt, um den europäischen Soja-Bedarf zu decken. In Europa wird fast die Hälfte der Weizenernte verfüttert. Weltweit gelangen mehr als 40 Prozent der Getreideernte an Weizen, Roggen, Hafer und Mais in die die Tröge von Masttieren.

Bund-Expertin Reinhild Benning kritisierte, dass sich mit dem wachsenden Hunger der Menschen auf Fleisch der weltweite Druck auf die Landwirtschaft erhöhe, das Fleisch immer billiger zu produzieren. Die Konsequenz sei eine zunehmende Industrialisierung der Tierhaltung.

Kleinbäuerliche Betreibe hätten kaum noch eine Chance, sich an den Märkten zu behaupten. Vor allem Schweine und Geflügel würden in immer größeren Beständen gehalten. In Brandenburg etwa sei erst kürzlich eine Mastanlage für 37.000 Schweine genehmigt worden.

„Immer absurdere Kapazitäten“ nötig

Je größer die Mastbetriebe sind, desto größere Futtermenge müssen angeliefert und desto mehr Exkremente wie Gülle müssen auch wieder entsorgt werden. Gerade die Gülle wird häufig auf Felder ausgebracht – und führt dann zu einer erhöhten Belastung des Grundwassers mit Nitraten.

Da Tiere in Mastbetrieben häufig mit Antibiotika behandelt werden und gerade auch in der Schweinehaltung immer noch Hormone verabreicht werden, können auch Rückstände dieser Arzneimittel in die Umwelt gelangen und die Gesundheit der Verbraucher gefährden.

Mit der Steigerung der Tierproduktion ist auch eine dramatische Ausweitung der Schlachtkapazitäten verbunden. Diese nehmen nach Einschätzung von Barbara Unmüßig, Mitglied im Vorstand der Heinrich-Böll-Stiftung, immer „absurdere Kapazitäten“ an.

So schlachtet etwa die US-Gesellschaft Tyson Foods, nach dem brasilianischen Konzern JBS das zweitgrößte Fleischunternehmen der Welt, in jeder Woche 42 Millionen Hühner, 350.000 Schweine und 170.000 Rinder.

Niedrige Löhne in deutschen Schlachthöfen

Nicht nur in den USA ist die Zahl der Schlachthöfe in den vergangenen Jahrzehnten drastisch zurückgegangen und konzentriert sich heute auf wenige Großbetriebe. Auch in Deutschland entfallen mehr als 50 Prozent des Schlachtwerts von Schweinen auf drei Konzerne.

Insgesamt werden hierzulande im Jahr rund 750 Millionen Tiere geschlachtet: fast 630 Millionen Hühner, knapp 60 Millionen Schweine, fast 40 Millionen Puten, 25 Millionen Enten und mehr als drei Millionen Rinder. Gerade beim Schweinefleisch ist Deutschland innerhalb weniger Jahre vom Importeur zum Exporteur geworden.

Die vergleichsweise niedrigen Löhne in deutschen Schlachthöfen führten dazu, dass Fleischkonzerne aus Nachbarländern zur Schlachtung nach Deutschland bringen, heißt es im Fleischatlas. So hätte der Großkonzern Danish Crown Tausende Arbeitsplätze von Dänemark nach Deutschland verlagert.

Einige Staaten hätten inzwischen offiziell Beschwerde bei der Europäischen Kommission eingelegt. Die belgische Regierung und eine Initiative französischer Schlachtbetriebe etwa sähen in den deutschen Dumpinglöhnen eine Wettbewerbsverzerrung.

„Wir müssen zurück zum Sonntagsbraten“

Angesichts der Folgen des wachsenden Fleischkonsums forderte Unmüßig weltweit eine „Trendumkehr in der Agrarpolitik“. Bäuerliche Betriebe müssten gestärkt und die Tierhaltung in kleineren Einheiten gefördert werden. Es gehe darum, Fleisch in Maßen zu konsumieren. Die Deutsche Gesellschaft für Ernährung (DGE) empfehle 300 bis 600 Gramm Fleisch pro Woche. Das wären 15 bis 30 Kilogramm im Jahr und damit etwa halb so viel wie heute.

„Wir müssen zurück zum Sonntagsbraten“, sagt Unmüßig. Wenn die deutschen Verbraucher weniger Fleisch essen würden, wäre der Umstieg auf eine artgerechtere Haltung der Tiere problemlos möglich. Kein Fleisch wäre aber auch nicht schlecht, sagte Unmüßig. Sie forderte den neuen Bundesagrarminister Hans-Peter Friedrich (CSU) auf, die Exportorientierung der deutschen Landwirtschaft bei der Tierproduktion nicht noch zu fördern. Ein „Weiter so“ dürfe es nicht geben.

Der Fleischatlas von Heinrich-Böll-Stiftung, Bund und der Monatszeitung „Le Monde Diplomatique“ war im vergangenen Jahr zum ersten Mal erschienen. Die aktualisierte Ausgabe setzt andere Themenschwerpunkte und bedient sich dabei offiziell verfügbarer Statistiken. Ziel sei es, erklärte Unmüßig, die Verbraucher aufzuklären, damit sie sich bewusst entscheiden können, wie viel Fleisch sie essen wollen.

Life Explosion in the Oceans ? Yes, we can ! 8-)

For some good reasons, we could need an EXPLOSION OF THE LIFE OF LIVING FISH in the Oceans. First at all, we have to save the family members and the inventory of our food ressources for their and so for our survial.

In second, we have to buffer the ressources of fish by drastically breeding in first the species krill all over the world, so that alga’s could be eaten by that fish, and also that the oxygen levels could be normlized. The results would be a more higher levels of just normal fish, whales, dolphins, seals and so sharks.

It would be possible just by bringing in a small virus capsuled within a bacteria, that transports or engage an APHRODISIACUM. 🙂

L.O.V.I.E.S.

Yes, we already talked about that bacteria here ->

http://gaia-rescue.org

Fortunately, we know how to fix the things. The consequent usage of genetically optimzed and designed bacteria. I call them:

L.O.V.I.E.

“Lifeforms Of Very Important Emergency”

A very beautiful name for a daughter, hm ? 🙂 <3

__________________________

Now, it’s just a question of doing that job before time is running out. <3

Maybe, some pupils and students are able to calculate how much krill, shell and sponge is able to be breeded with the current amounts of calcium within the oceans.

We have about 513,605,233 cubic kilometers ocean water with that composition of basic elements ->

https://en.wikipedia.org/wiki/Seawater#Compositional_differences_from_freshwater

Do we still need to bring in Lime Stone ? Hm. Please, pupils, just answer and find the solutions. Thank you !

________________________________

Here some Infos about the needed carbon and carbon hydroxide amounts for this operation:

Dies ist die HTML-Version der Datei https://www.soest.hawaii.edu/oceanography/faculty/zeebe_files/Publications/ZeebeWolfEnclp07.pdf. Google erzeugt beim Crawlen des Web automatisch HTML-Versionen von Dokumenten.

Tipp: Um deinen Suchbegriff schnell auf dieser Seite zu finden, drücke Strg+F bzw. ⌘-F (Mac) und verwende die Suchleiste.

Page 1
CARBON DIOXIDE, DISSOLVED (OCEAN)
The ocean contains about sixty times more carbon in the form of dissolved inorganic
carbon than in the pre-anthropogenic atmosphere (~600 Pg C). On time scales <105
yrs, the ocean is the largest inorganic carbon reservoir (~38,000 Pg C) in exchange
with atmospheric carbon dioxide (CO2) and as a result, the ocean exerts a dominant
control on atmospheric CO2 levels. The average concentration of inorganic carbon in
the ocean is ~2.3 mmol kg−1 and its residence time is ~200 ka.
Dissolved carbon dioxide in the ocean occurs mainly in three inorganic forms:
free aqueous carbon dioxide (CO2(aq)), bicarbonate (HCO3
), and carbonate ion
(CO3
2−). A minor form is true carbonic acid (H2CO3) whose concentration is less
than 0.3% of [CO2(aq)]. The sum of [CO2(aq)] and [H2CO3] is denoted as [CO2].
The majority of dissolved inorganic carbon in the modern ocean is in the form of
HCO3
(>85%), as described below.
Carbonate chemistry
In thermodynamic equilibrium, gaseous carbon dioxide (CO2(g)), and [CO2] are
related by Henry’s law:
(1)
]
[CO (g)
CO
2
2
0
K
=
where K0 is the temperature and salinity dependent solubility coefficient of CO2 in
seawater (Weiss, 1974). The concentration of dissolved CO2 and the fugacity of
gaseous CO2, fCO2, then obey the equation [CO2] = K0 × fCO2, where the fugacity is
virtually equal to the partial pressure, pCO2 (within ~1%). The dissolved carbonate
species react with water, hydrogen and hydroxyl ions and are related by the
equilibria:
.
2H
CO
H
HCO
O H
CO
2
3
3
2
2
*
2
*
1
+
+
+
=
+
=
+
K
K
(2)
The pK*’s (= −log(K*)) of the stoichiometric dissociation constants of carbonic acid
in seawater are pK1
* = 5.94 and pK2
* = 9.13 at temperature T=15°C, salinity S=35,
and surface pressure P = 1 atm (Prieto and Millero, 2001). At typical surface
seawater pH of 8.2, the speciation between [CO2], [HCO3
], and [CO3
2−] is 0.5%,
89%, and 10.5%, respectively, showing that most of the dissolved CO2 is in the form
of HCO3
and not in the form of CO2 (Figure 1). The sum of the dissolved
carbonate species is denoted as total dissolved inorganic carbon (ΣCO2):
1

Page 2
(3)
. ]
CO[]
HCO
[ ]
[CO
CO
2
3
3
2
2
+
+
=
Σ
This quantity is also represented as DIC, TIC, TCO2, and CT. Another essential
parameter to describe the carbonate system is the total alkalinity (TA), a measure of
the charge balance in seawater:
.
compounds
minor
][H ]
[OH
]
[B(OH)
]
2[CO
]
[HCO
TA
4
2
3
3
+
+
+
+
=
+
(4)
ΣCO2 and TA are conservative quantities, i.e. their concentrations measured in
gravimetric units (mol kg−1) are unaffected by changes in pressure or temperature,
for instance, and they obey the linear mixing law. Therefore they are the preferred
tracer variables in numerical models of the ocean’s carbon cycle. Of all the carbon
species and carbonate system parameters described above, only pCO2, pH, ΣCO2,
and TA can be determined analytically. However, if any two parameters and total
dissolved boron are known, all parameters (pCO2, [CO2], [HCO3
], [CO3
2−], pH,
ΣCO2, and TA) can be calculated for a given T, S, and P (cf. Zeebe and Wolf-
Gladrow, 2001).
Buffering
The dissolved carbonate species in seawater provide an efficient chemical buffer to
various processes that change the properties of seawater. For instance, the addition
of a strong acid such as hydrochloric acid (naturally added to the ocean by
volcanism), is strongly buffered by the seawater carbonate system. In distilled water,
the addition of HCl leads to an increase of [H+] and [Cl] in solution in a ratio 1:1.
This is not the case in seawater. For example, the addition of 1 µmol kg−1 HCl to
distilled water at pH 7 reduces the pH to very close to 6. The same addition to
seawater at pH 7 and ΣCO2 = 2000 µmol kg−1 at T=15°C and S=35 only reduces the
pH to 6.997. The seawater pH buffer is mainly a result of the capacity of CO3
2− and
HCO3
ions to accept protons.
One specific buffer factor, the so-called Revelle factor, is important in the
context of the oceanic uptake of anthropogenic CO2. The Revelle factor, R, is given
by the ratio of the relative change of atmospheric pCO2 (in equilibrium with
dissolved CO2) to the relative change of ΣCO2 in seawater:
(5)
(
) (
)sw2
2
a2
2
CO
/
COd]
CO[ / ]
CO
d[
Σ
Σ
=
p
p
R
and varies roughly between 8 and 15, depending on temperature and pCO2. As a
consequence, the current increase of ΣCO2 in surface seawater occurs not in a 1:1
2

Page 3
ratio to the increase of atmospheric CO2 (the latter being mainly caused by fossil fuel
burning). Rather, a doubling of pCO2 will only lead to an increase of ΣCO2 of the
order of 10%.
ΣCO2 and TA of a water parcel
Important processes that can change the carbonate chemistry of a water parcel in the
ocean can be described by considering changes in ΣCO2 and TA (Figure 2). Invasion
of CO2 from (or release to) the atmosphere increases (or decreases) ΣCO2,
respectively, while TA stays constant. This leads to a rise and drop of [CO2],
respectively, with opposite change in pH (since CO2 is a weak acid). Respiration and
photosynthesis lead to the same trends, except that TA changes slightly due to
nutrient release and uptake. CaCO3 precipitation decreases ΣCO2 and TA in a ratio
1:2, and, counterintuitively, increases [CO2] although inorganic carbon has been
reduced. For a qualitative understanding, consider the chemical reaction
(6)
OH
CO
CaCO
HCO
2
Ca
2
2
3
3
2
+
+
+
+
which indicates that during CaCO3 precipitation CO2 is liberated. Quantitatively,
however, the conclusion that [CO2] in solution is increasing by one mole per mole
CaCO3 precipitated is incorrect because of buffering. The correct analysis takes into
account the decrease of ΣCO2 and TA in a ratio 1:2 and the buffer capacity of
seawater. That is, the medium gets more acidic because the decrease in alkalinity
outweighs that of total carbon and hence [CO2] increases. For instance, at surface
water conditions (ΣCO2 = 2000 µmol kg−1, pH= 8.2, T=15°C, S=35), [CO2] increases
by only ~0.03 µmol per µmol CaCO3 precipitated.
Measurements and data
As stated above, the following parameters of the carbonate system can be
determined experimentally: pCO2, pH, ΣCO2, and TA. The pCO2 of a seawater
sample refers to the pCO2 of a gas phase in equilibrium with that seawater sample. It
is usually measured by equilibrating a small volume of gas with a large volume of
seawater at given temperature. Then the mixing ratio of CO2(g) in the gas phase is
determined either using a gas chromatograph or an infrared analyzer. Finally, the
pCO2 is calculated from the mixing ratio. pH is routinely measured using a glass /
reference electrode cell or spectrophotometrically using an indicator dye. ΣCO2 is
usually measured by an extraction / coulometric method or a closed cell titration. A
potentiometric titration is used to determine TA. For summary, see DOE (1994) and
Grasshoff et al. (1999).
A great volume of data on the carbonate chemistry of the oceans has been
obtained over the last few decades through programs such as GEOSECS
(Geochemical Ocean Sections Study), TTO (Transient Tracers in the Oceans), and
3

Page 4
WOCE (World Ocean Circulation Experiment). Much of these data are available
through CDIAC (Carbon Dioxide Information Analysis Center) at
http://cdiac.ornl.gov.
Distribution of ΣCO2 and TA
The vertical distribution of ΣCO2 in the ocean is a result of the so-called biological
and physical carbon pumps. Uptake of carbon into organic matter and production of
CaCO3 in the surface ocean, the transport to deeper layers, and the remineralization
at depth (biological pump) reduces ΣCO2 in surface waters while ΣCO2 in deep
water increases (Figure 3a). The increased solubility of CO2 in high-latitudes at low
temperatures where the ocean’s deep water forms and descends to the abyss leads to
the same vertical trend in ΣCO2 (physical pump). Vertical profiles of TA in the
ocean (Figure 3b) are mostly governed by production and dissolution of CaCO3.
Generally, uptake of Ca2+ and CO3
2- in the surface and release in the deep ocean
reduces and increases TA, respectively. This is similar to the cycling of organic
carbon and ΣCO2 but the maximum in TA occurs at greater depth because CaCO3 is
mainly redissolved in deep water. The vertical distribution of ΣCO2 and TA
constitutes one major control on atmospheric CO2 concentrations. For example,
without the biological pump, the pre-anthropogenic atmospheric CO2 concentration
would have been >500 ppmv (parts per million by volume) rather than 280 ppmv
(Maier-Reimer et al., 1996).
The horizontal distribution of CO2 and ΣCO2 in the surface ocean is mainly
governed by the temperature-dependent solubility of CO2 on interannual timescales.
Warm low-latitude surface water generally holds less CO2 (~10 µmol kg−1) and
ΣCO2 (~2000 µmol kg−1) than cold high-latitude surface water (CO2 ~15 µmol kg−1
and ΣCO2 ~2100 µmol kg−1 ), because of the enhanced solubility at low temperature.
Locally, and on seasonal time scales, however, significant deviations from these
general patterns may occur due to changes in salinity and processes such as
biological activity, upwelling, temperature variations, river runoff, and other
processes which affect ΣCO2 and TA.
Deep ocean circulation whose mass transport is predominantly from the North
Atlantic through the Southern Ocean into the Indian and Pacific Ocean, produces
horizontal deep-water gradients in ΣCO2 and TA. While the details of deep ocean
circulation are much more complex in general, the ‘youngest’ water which was most
recently in contact with the atmosphere resides in the Atlantic, whereas the ‘oldest’
water resides in the Pacific. As a corollary, the water in the deep North Pacific has
collected the most respired CO2 on its way and thus has the highest ΣCO2 (Figure
3a).
Inventories of ΣCO2 and TA over time
4

Page 5
Under most natural conditions, the global inventories of ΣCO2 and TA constitute
one major control on atmospheric CO2 concentrations. Understanding changes of
these inventories over time is therefore crucial to understanding climate. Thus, the
characterization of the dominant carbon and alkalinity fluxes on different time scales
is of fundamental importance. [Note that due to our limited knowledge on this
subject, the following analysis is to be considered a simplification (Sundquist,
1986)].
Millennial (<103 yr) time scale
On time scales shorter than ~103 yrs, the natural reservoirs that exchange carbon
with the ocean are the atmosphere (pre-anthropogenic inventory ~600 Pg C), the
biosphere (~550 Pg C), and soils (~1,500 Pg C) and thus the oceanic inventory of
ΣCO2 (~38,000 Pg C) can be considered essentially constant. Exceptions to this are
potential rapid carbon inputs from otherwise long-term storage reservoirs. Examples
are the current combustion of fossil fuel carbon by humans (which will eventually
be mostly absorbed by the ocean), and catastrophic events such as possible impact
events over carbonate platforms, or abrupt methane releases from gas hydrates (as
postulated for the Late Paleocene Thermal Maximum).
103−105 yr time scale
On time scales of 103−105 yrs, fluxes between reactive carbonate sediments (~5,000
Pg C) and the ocean’s inventories of ΣCO2 and TA have to be considered as well.
Oceanic inventories may vary, for instance, during glacial cycles (see so-called
calcite compensation below). The magnitude of these changes is, however, limited
and so are associated changes in atmospheric CO2.
Tectonic (>105 yr) time scale
A large amount of carbon is locked up in the Earth’s crust as carbonate carbon
(~70×106 Pg C) and as elemental carbon in shales and coals (~20×106 Pg C). On
time scales >105 yrs, this reservoir is active and imbalances in the fluxes to and from
this pool can lead to drastic changes in ΣCO2 and TA and atmospheric CO2. The
balance between CO2 consumption by subduction of marine sediments, weathering,
subsequent carbonate burial and volcanic degassing of CO2 are the dominant
processes controlling carbon fluxes on this time scale (Berner et al., 1983). This so-
called rock cycle is driven by tectonic processes which lead to changes in seafloor
spreading rates and continental uplift.
[CO3
2−
] and CaCO3 saturation
The accumulation and dissolution of reactive CaCO3 sediments in the deep sea
provide a powerful feedback to regulating the carbonate ion content ([CO3
2−]) and
thus the concentration of dissolved CO2 in the ocean. The inventory of carbonate ion
5

Page 6
in the ocean cannot be viewed independently of carbonate sediments because of the
control of CO3
2− on the solubility of CaCO3. In today’s ocean there is a close
correspondence between [CO3
2−] of deep water and the observed distribution of
CaCO3 in deep sea sediments. Depending on the geographic location, there is a
certain depth above which the ocean floor is mainly covered with calcite while
below it is largely calcite-free. The depth at which the sediments are virtually free of
calcium carbonate is called the calcium carbonate compensation depth (CCD). The
transition from calcite-rich to calcite-depleted sediments is not abrupt but gradual
and the depth of rapid increase in the rate of dissolution as observed in sediments is
called the calcite lysocline. Aragonite is more soluble than calcite and the aragonite
lysocline occurs at shallower depth than the calcite lysocline. In the Pacific, the
aragonite lysocline can be as shallow as 500 m and ~3 km in the Atlantic. The
calcite lysocline lies at ~3−4 km in the Pacific and between 4 and 5 km in the
Atlantic.
The reason for the disappearance of CaCO3 at depth is the increase of solubility
with pressure and thus with depth. The CaCO3 saturation state of seawater is
expressed by Ω:
(7)
*
sp
sw
-2
3
sw
2
]
CO[
]
[Ca
K
×
=
+
where [Ca2+]sw and [CO3
2−]sw are the concentrations of Ca2+ and CO3
2− in seawater
and Ksp
* is the solubility product of calcite or aragonite at the in situ conditions of
temperature, salinity and pressure. Values of Ω > 1 signifies supersaturation, Ω < 1
signifies undersaturation. Because Ksp
* increases with pressure (the temperature
effect is small) there is a transition of the saturation state from Ω > 1 (calcite-rich) to
Ω < 1 (calcite-depleted) sediments at depth.
In the modern ocean, [Ca2+]sw is large (compared to [CO3
2−]sw) and virtually
constant (except for variations in salinity) and thus variations of the saturation state
are controlled by variations in [CO3
2−]sw. The crossover of [CO3
2−]sw and the
carbonate ion concentration at calcite saturation is called calcite saturation horizon.
The feedback that controls the average carbonate ion content of seawater and the
distribution of CaCO3 on multi-millennial time scale via variations of the saturation
horizon is called calcite compensation. This in turn exerts a major control on
dissolved CO2 and alkalinity in the ocean.
Calcite compensation
Calcite compensation maintains the balance between CaCO3 weathering fluxes into
the ocean and CaCO3 burial fluxes in marine sediments on time scales of 103−105 yrs
(Broecker and Peng, 1989). In steady state, the riverine flux of Ca2+ and CO3
2− ions
from weathering must be balanced by burial of CaCO3 in the sea, otherwise [Ca2+]
and [CO3
2−] would rise or fall. The feedback that maintains this balance works as
6

Page 7
follows. Assume that there is an excess weathering influx of Ca2+ and CO3
2− over
burial of CaCO3. Then, the concentrations of Ca2+ and CO3
2− in seawater increase
which leads to an increase of the CaCO3 saturation state. This in turn leads to a
deepening of the saturation horizon and to an increased burial of CaCO3 just until
the burial again balances the influx. The new balance is restored at higher [CO3
2−]
than before.
ΣCO2 and δ13C
In the ocean, there is an inverse relationship between the vertical distribution of
ΣCO2 and the stable carbon isotope ratio 13C/12C of ΣCO2 13CΣCO2). In the surface
ocean, phytoplankton takes up inorganic carbon to produce organic carbon via
photosynthesis. This process discriminates against the heavy isotope 13C such that
the organic carbon is depleted in 13C and, as a result, surface ΣCO2 becomes
enriched in 13C. At depth the process is reversed. The organic carbon settling down
to intermediate and deep waters is remineralized and the ‘isotopically light’ carbon
is set free, which causes deep ΣCO2 to become enriched in 12C (i.e. it has relatively
less 13C). In today’s ocean the mean difference in δ13C of ΣCO2 between surface and
deep is ∆δ13C ≅ 2‰. In a very simple two-box view of the ocean, one can show that
∆δ13C depends on the strength of the carbon export to deep water (biological pump),
the photosynthetic fractionation factor (∆photo), and mean ΣCO2 of the ocean
(Broecker, 1982):
(8)
.CO/
CO
C
δ
2
2
photo
13
Σ
∆Σ
×
=
where ∆ΣCO2 is the surface-to-deep difference in ΣCO2 due to the biological pump.
Given information on past ∆δ13C from differences in δ13C of planktonic and benthic
foraminifera, and assumptions regarding the strength of the biological pump, and
photo, estimates of ΣCO2 of past oceans have been derived (e.g. Shackleton, 1985).
Richard E. Zeebe and Dieter A. Wolf-Gladrow
Bibliography
Berner, R.A., Lasaga, A.C. and Garrels, R.M. (1983) The carbonate-silicate geochemical cycle and
its effect on atmospheric carbon dioxide over the past 100 million years. Am J. Sci. 283, 641-683.
Broecker, W.S. (1982) Ocean chemistry during glacial times. Geochim. Cosmochim. Acta, 46, 1689-1705.
Broecker, W.S. and Peng, T.-H. (1987) The role of CaCO3 compensation in the glacial to interglacial
atmospheric CO2 change. Global Biogeochem. Cycles. 1, 5-29.
DOE (1994) Handbook of methods for the analysis of the various parameters of the carbon dioxide
system in sea water; version 2, (eds. Dickson, A.G. and Goyet, C.) ORNL/CDIAC-74.
Grasshoff, K., Kremling, K. and Ehrhardt, M. (eds.) (1999) Methods of Seawater Analysis, Wiley-VCH,
Weinheim, 600 pp.
7

Page 8
Maier-Reimer, E., Mikolajewicz, U., Winguth, A. (1996) Future ocean uptake of CO2: Interaction
between ocean circulation and biology. Climate Dynamics, 12, 711-721.
Prieto, F.J.M. and Millero F.J. (2001) The values of pK1 and pK2 for the dissociation of carbonic acid in
seawater. Geochim. Cosmochim. Acta, 66(14), 2529-2540.
Shackleton, N.J. (1985) Oceanic carbon isotope constraints on oxygen and carbon dioxide in the
Cenozoic atmosphere, in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to
Present, Geophys. Monogr. Ser., Vol. 32, (eds. Sundquist, E.T. and Broecker W.S.) AGU,
Washington DC, pp. 412-417.
Sundquist, E.T. (1986) Geologic Analogs: Their value and limitations in carbon dioxide research, in The
Changing Carbon cycle: A Global Analysis, (eds. Trabalka, J.R. and Reichle, D.E.). Springer-Verlag,
New York, pp. 371-402.
Weiss, R.F. (1974), Carbon dioxide in water and seawater: The solubility of a non-ideal gas. Mar. Chem.,
2, 203-215.
Zeebe, R.E. and Wolf-Gladrow D.A. (2001) CO2 in Seawater: Equilibrium, Kinetics, Isotopes. Elsevier
Oceanography Series. Amsterdam, 346 pp.
Cross-references
Carbon cycle
Carbon dioxide and methane, Quaternary variations
Carbon isotopes, stable
Carbonate compensation depth
Glacial-interglacial cycles
Marine carbon geochemistry
Methane hydrates, carbon cycling, and environmental change
Paleo-ocean pH
Quaternary climate transition and cycles
Thermohaline circulation
8

Page 9
0
2
4
6
8
10
12
14
−5
−4.5
−4
−3.5
−3
−2.5
−2
−1.5
pH
Log [concentration (mol kg
−1
)]
B(OH)
3
CO
2
H
+
OH
HCO
3
CO
3
2−
B(OH)
4
Surface
Ocean pH →
Figure 1 Concentrations of the dissolved forms of the carbonate system in seawater (so-called
Bjerrum plot). ΣCO2 = 2000 µmol kg−1, temperature T=15°C, salinity S=35, and pressure P =
1 atm (after Zeebe and Wolf-Gladrow, 2001).
9

Page 10
1.95
2
2.05
2.1
2.15
2.3
2.35
2.4
2.45
ΣCO2
(mmol kg−1)
Total Alkalinity (mmol kg
−1
)
8
8
11
11
11
15
15
20
8
8.2
8.2
8.2
pH
[CO
2
]
v
CaCO
3
dissolution
v
CaCO
3
formation
2
1
v
Respiration
v
Photosynthesis
v
CO
2
Invasion
v
CO
2
Release
Figure 2 Important processes changing the carbonate chemistry of a water parcel in the ocean
(values shown refer to T=15°C, S=35, and P=1 atm). Solid and dashed lines indicate contours
of constant dissolved CO2 and pH, respectively. Many processes are most easily described by
considering changes in ΣCO2 and TA. For example, the invasion of CO2 increases ΣCO2
while TA stays constant which leads to an increase of dissolved CO2 and a decrease of pH
(since CO2 is a weak acid).
10

Page 11
2000
2100
2200
2300
2400
0
1
2
3
4
5
6
Σ CO2 (µmol kg−1)
Depth (km)
a
NA→
←SA
SO→
SI→
←NI
SP→
←NP
TA (µmol kg−1)
2250
2300
2350
2400
2450
0
1
2
3
4
5
6
Depth (km)
b
NA→
←SA
SO→
SI→
NI→
←SP
←NP
Figure 3 Average vertical distribution of ΣCO2 (a) and TA (b) in the oceans. NA/SA =
North/South Atlantic, SO = Southern Ocean, NI/SI = North/South Indian, NP/SP =
North/South Pacific. The data (www.ewoce.org) was compiled using Ocean Data View
(Schlitzer, R., www.awi-bremerhaven.de/GEO/ODV).
11
____________________________________